Math 103 Day 18: Areas and Definite Integrals

Ryan Blair

University of Pennsylvania

Thursday November 11, 2010

Ryan Blair (U Penn)

Math 103 Day 18: Areas and Definite Integra Thursday November 11, 2010 1 / 8

<ロ> (日) (日) (日) (日) (日)

3

Useful Formulas

$$1 + 2 + 3 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \sum_{i=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

<ロ> (日) (日) (日) (日) (日)

æ

п	Ln	R _n
10	.285	.385
20	.308	.358
30	.316	.350
50	.323	.343
100	.328	.338
1000	.333	.334

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Definition

The **area** A of a region S that lies under the graph of a continuous function f is the limit of the sum of areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

The 14 at 14

Definition

The **area** A of a region S that lies under the graph of a continuous function f is the limit of the sum of areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

Let x_i^* be any value between x_{i-1} and x_i . A collection of such points are called **sample points**. Then

$$A = \lim_{n \to \infty} [f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x]$$

< 回 ト < 三 ト < 三 ト

Definition

(**Definite Integral**) If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = \frac{b-a}{n}$. We let $x_0(=a), x_1, x_2, ..., x_n(=b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, ..., x_n^*$ be any **sample points** in these subintervals. Then the **definite integral of** f from a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

provided that this limit exists. If it does exist, we say that f is **integrable** on [a, b].

通下 イヨト イヨト

Theorem

If f is continuous on [a, b], or if f has only a finite number of jump discontinuities, then f is integrable on [a, b]; that is , the definite integral $\int_a^b f(x) dx$ exists.

Theorem

If f is integrable on [a, b], then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

過 ト イヨ ト イヨト

Area Under a Curve

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○